Telegram Group & Telegram Channel
Making Deep Learning Go Brrrr From First Principles

Предлагаю сегодня посмотреть на третий пост от Horace He - разработчика Pytorch - на этот раз по поводу выжимания производительности из говнокода. Мы уже разбирали его пост на тему скорости умножения матриц разного размера, а также о том, почему матрицы из нулей перемножаются быстрее остальных.

В этой статье (2020) проанализировали фактические вычисления и реальные временные затраты в имплементации BERT и получили, что хоть матричные умножения и составляют 99.8% вычислений, на них уходит лишь 61% времени - остальное уходит на element-wise операции / нормализации. Huh?

У любого Deep Learning графа можно выделить 3 вида боттлнеков. Очень полезным будет понимать, какой из боттлнеков является наиболее актуальным в каждом конкретном сетапе. Давайте разберём их по порядку.

Compute - временные затраты на фактическое выполнение вычислений на GPU

В принципе, если в вашей схеме compute - главный боттлнек, то с этим уже можно поздравить - такое бывает нечасто. Но и тут не всё так просто.
В современных GPU есть так называемые Tensor Cores - процессоры, созданные только для умножения матриц. Они выдают в 15 раз больше флопсов, чем обычные ядра, таким образом, все остальные вычисления получают большой штраф к скорости.

Однако, в упомянутом BERT все эти операции выполнялись в сотни раз медленнее, чем матричные умножения, с точки зрения флопсов. И если даже дефолтнейший трансформер упирается в другие боттлнеки, то ваш говнокод явно страдает в основном от них.

Bandwidth - временные затраты на движение данных внутри GPU

Как уже было упомянуто в посте про матрицы, движение данных туда-сюда для вычислений занимает жирный кусок времени выполнения. Чтобы его минимизировать, необходимо фьюзить операции - выполнять много вычислений над куском данных за раз. Есть много уровней болота, на которые можно опуститься. Из элементарного - удалите из своего кода x1 = x.cos() \n x2 = x1.cos() и замените на x2 = x.cos().cos(). Можно фьюзить нормализации с соседними операциями, применять автоматические фьюзеры/компиляторы, ну, а если вы псих, то можно написать свой CUDA kernel на Triton (сам не пробовал).

В посте ссылка на colab
, в котором проведён следующий эксперимент - берём тензор размера ~миллион и умножаем на 2 несколько раз с включенным компилятором, который объединяет умножения в один поход в GPU, Что бы вы думали? 16 умножений работают с той же скоростью, что и одно. Лишь после 64 умножений мы начинаем упираться в компьют.

Overhead - все остальные затраты

На прикреплённой картинке можно увидеть результат профайлинга пайторча, который производит единичное сложение. Итак, A100 умеет выдавать 312 терафлопсов, чистый питон выдаёт 32 мегафлопсов при сложении, а вот пайторч для вас сделает это лишь 280 тысяч раз.

Пайторч и другие фреймворки не оптимизированы под выполнение маленьких операций, их приоритет - гибкость и комфорт для разработчика, а также скорость выполнения больших операций. Вы можете просто попросить Pytorch посчитать a + b, и под капотом он сделает тонну работы, которая позволяет вам не указывать все типы данных, шейпы и т.д. вручную.

Уменьшать overhead можно тем же методом - используя соответствующий компилятор графа - если это касается самого фреймворка, ну и писать нормальный код, если речь про остальное. Так что, как видите, всё очень просто.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/257
Create:
Last Update:

Making Deep Learning Go Brrrr From First Principles

Предлагаю сегодня посмотреть на третий пост от Horace He - разработчика Pytorch - на этот раз по поводу выжимания производительности из говнокода. Мы уже разбирали его пост на тему скорости умножения матриц разного размера, а также о том, почему матрицы из нулей перемножаются быстрее остальных.

В этой статье (2020) проанализировали фактические вычисления и реальные временные затраты в имплементации BERT и получили, что хоть матричные умножения и составляют 99.8% вычислений, на них уходит лишь 61% времени - остальное уходит на element-wise операции / нормализации. Huh?

У любого Deep Learning графа можно выделить 3 вида боттлнеков. Очень полезным будет понимать, какой из боттлнеков является наиболее актуальным в каждом конкретном сетапе. Давайте разберём их по порядку.

Compute - временные затраты на фактическое выполнение вычислений на GPU

В принципе, если в вашей схеме compute - главный боттлнек, то с этим уже можно поздравить - такое бывает нечасто. Но и тут не всё так просто.
В современных GPU есть так называемые Tensor Cores - процессоры, созданные только для умножения матриц. Они выдают в 15 раз больше флопсов, чем обычные ядра, таким образом, все остальные вычисления получают большой штраф к скорости.

Однако, в упомянутом BERT все эти операции выполнялись в сотни раз медленнее, чем матричные умножения, с точки зрения флопсов. И если даже дефолтнейший трансформер упирается в другие боттлнеки, то ваш говнокод явно страдает в основном от них.

Bandwidth - временные затраты на движение данных внутри GPU

Как уже было упомянуто в посте про матрицы, движение данных туда-сюда для вычислений занимает жирный кусок времени выполнения. Чтобы его минимизировать, необходимо фьюзить операции - выполнять много вычислений над куском данных за раз. Есть много уровней болота, на которые можно опуститься. Из элементарного - удалите из своего кода x1 = x.cos() \n x2 = x1.cos() и замените на x2 = x.cos().cos(). Можно фьюзить нормализации с соседними операциями, применять автоматические фьюзеры/компиляторы, ну, а если вы псих, то можно написать свой CUDA kernel на Triton (сам не пробовал).

В посте ссылка на colab
, в котором проведён следующий эксперимент - берём тензор размера ~миллион и умножаем на 2 несколько раз с включенным компилятором, который объединяет умножения в один поход в GPU, Что бы вы думали? 16 умножений работают с той же скоростью, что и одно. Лишь после 64 умножений мы начинаем упираться в компьют.

Overhead - все остальные затраты

На прикреплённой картинке можно увидеть результат профайлинга пайторча, который производит единичное сложение. Итак, A100 умеет выдавать 312 терафлопсов, чистый питон выдаёт 32 мегафлопсов при сложении, а вот пайторч для вас сделает это лишь 280 тысяч раз.

Пайторч и другие фреймворки не оптимизированы под выполнение маленьких операций, их приоритет - гибкость и комфорт для разработчика, а также скорость выполнения больших операций. Вы можете просто попросить Pytorch посчитать a + b, и под капотом он сделает тонну работы, которая позволяет вам не указывать все типы данных, шейпы и т.д. вручную.

Уменьшать overhead можно тем же методом - используя соответствующий компилятор графа - если это касается самого фреймворка, ну и писать нормальный код, если речь про остальное. Так что, как видите, всё очень просто.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/257

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

The seemingly negative pandemic effects and resource/product shortages are encouraging and allowing organizations to innovate and change.The news of cash-rich organizations getting ready for the post-Covid growth economy is a sign of more than capital spending plans. Cash provides a cushion for risk-taking and a tool for growth.

If riding a bucking bronco is your idea of fun, you’re going to love what the stock market has in store. Consider this past week’s ride a preview.The week’s action didn’t look like much, if you didn’t know better. The Dow Jones Industrial Average rose 213.12 points or 0.6%, while the S&P 500 advanced 0.5%, and the Nasdaq Composite ended little changed.

Knowledge Accumulator from us


Telegram Knowledge Accumulator
FROM USA